Mathematics Standards
Catalina Foothills School District
Math 7 Accelerated

Math 7 Accelerated is a combination of the most essential skills for both Math 7 and Math 8 . The course content has been organized into units of related standards from Math 7 and Math 8 . After successful completion of this course, students are prepared for Algebra 1.

Math 7 Accelerated: Overview

1. Develop understanding of proportional relationships.
2. Develop understanding of irrational numbers.
3. Develop understanding of expressions and equations, including solving linear equations, linear inequalities, and systems of linear equations.
4. Develop understanding of the concept of a function and use functions to describe quantitative relationships, including modeling an association in bivariate data with a linear equation.
(1) Students extend their understanding of ratios and rates to develop understanding of proportionality to solve singleand multi-step problems. Students use their understanding of ratios and proportionality to solve a wide variety of percent problems, including those involving discounts, interest, taxes, tips, and percent increase or decrease. Students graph proportional relationships and understand the unit rate informally as a measure of the steepness of the related line. They distinguish proportional relationships as the foundation for rate of change.
(2) Students use their understanding of multiplication and apply properties to develop understanding of radicals and integer exponents. They use their knowledge of rational numbers to develop understanding of irrational numbers.
(3) Students recognize equations for proportions ($y / x=m$ or $y=m x$) as special linear equations ($y=m x+b$) understanding that the constant of proportionality (m) is the slope, and the graphs are lines through the origin. They understand that the slope (m) of a line is a constant rate of change, so that if the input or x -coordinate changes by an amount A , the output or y -coordinate changes by the amount $\mathrm{m}-\mathrm{A}$. Students fluently solve linear equations and linear inequalities in one variable. They solve systems of two linear equations in two variables to analyze situations and solve problems. Students understand when they use properties of equality and logical equivalence, they maintain the solutions of the original equation.
(4) Students grasp the concept of a function as a rule that assigns to each input exactly one output. They can translate among representations and partial representations of functions (noting that tabular and graphical representations may be partial representations), and they describe how aspects of the function are reflected in the different representations.

Students use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For scatter plots that suggest linear association, students informally fit a straight line and assess the model fit by judging the closeness of the data points to the line.

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.

Standards for Math 7 Accelerated

Ratios and Proportional Relationships (RP)	
7.RP.A. 1	Compute unit rates associated with ratios involving both simple and complex fractions, including ratios of quantities measured in like or different units.
7.RP.A. 2	Recognize and represent proportional relationships between quantities. a. Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin). b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
7.RP.A. 3	Use proportional relationships to solve multi-step ratio and percent problems (e.g., simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error).
The Number System (NS)	
7.NS.A. 1	Add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0 . b. Understand $p+q$ as the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world context. c. Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference and apply this principle in real-world context. d. Apply properties of operations as strategies to add and subtract rational numbers.
7.NS.A. 2	Multiply and divide integers and other rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world context. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-$ q). Interpret quotients of rational numbers by describing real-world context. c. Apply properties of operations as strategies to multiply and divide rational numbers. d. Convert a rational number to decimal form using long division; know that the decimal form of a rational number terminates in 0 's or eventually repeats.
7.NS.A. 3	Solve mathematical problems and problems in real-world context involving the four operations with rational numbers. Computations with rational numbers extend the rules for manipulating fractions to complex fractions where $a / b \div c / d$ when a, b, c, and d are all integers and b, c, and $d \neq 0$.
8.NS.A. 1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion. Know that numbers whose decimal expansions do not terminate in zeros or in a repeating sequence of fixed digits are called irrational.
8.NS.A. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers. Locate them approximately on a number line diagram, and estimate their values.

	d Equations (EE)
7.EE.A. 1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
7.EE.A. 2	Rewrite an expression in different forms, and understand the relationship between the different forms and their meanings in a problem context (for example: $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05 ").
8.EE.A. 3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and express how many times larger or smaller one is than the other.
8.EE.A. 4	Perform operations with numbers expressed in scientific notation including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities.
7.EE.B. 3	Solve multi-step mathematical problems and problems in real-world context posed with positive and negative rational numbers in any form. Convert between forms as appropriate and assess the reasonableness of answers (for example: if a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$ per hour).
7.EE.B. 4	Use variables to represent quantities in mathematical problems and problems in real-world context, and construct simple equations and inequalities to solve problems. a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. b. Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.
8.EE.B. 5	Graph proportional relationships interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways (for example: compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed).
8.EE.B. 6	Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane. Derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at $(0, b)$.
8.EE.C. 7	Fluently solve linear equations and inequalities in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solution. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $\mathrm{x}=\mathrm{a}, \mathrm{a}=\mathrm{a}$, or $\mathrm{a}=\mathrm{b}$ results (where a and b are different numbers). b. Solve linear equations and inequalities with rational number coefficients, including solutions that require expanding expressions using the distributive property and collecting like terms.
8.EE.C. 8	Analyze and solve pairs of simultaneous linear equations. a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations including cases of no solution and infinite number of solutions. Solve simple cases by inspection. c. Solve mathematical problems and problems in real-world context leading to two linear equations in two variables.
Functions (F)	
8.F.A. 1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required.)

8.F.A. 2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
8.F.A. 3	Interpret the equation $y=m x+b$ as defining a linear function whose graph is a straight line; give examples of functions that are not linear. For example, the function $\mathrm{A}=\mathrm{s}^{2}$ giving the area of a square as a function of its side length in not linear because its graph contains the points $(1,1),(2,4)$, and $(3,9)$ which are not on a straight line.
Geometry (G)	
7.G.A. 1	Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
7.G.A. 2	Draw geometric shapes with given conditions using a variety of methods. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
7.G.A. 3	Describe the two-dimensional figures that result from slicing three-dimensional figures.
7.G.B. 4	Understand and use the formulas for the area and circumference of a circle to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
7.G.B. 5	Use facts about supplementary, complementary, vertical, and adjacent angles in multi-step problems to write and solve simple equations for an unknown angle in a figure.
7.G.B. 6	Solve mathematical problems and problems in a real-world context involving area of two-dimensional objects composed of triangles, quadrilaterals, and other polygons. Solve mathematical problems and problems in real-world context involving volume and surface area of three-dimensional objects composed of cubes and right prisms.
8.G.A. 1	Verify experimentally the properties of rotations, reflections, and translations. Properties include: lines are taken to lines, line segments are taken to line segments of the same length, angles are taken to angles of the same measure, parallel lines are taken to parallel lines.
8.G.A. 2	Understand that a two-dimensional figure is congruent to another if one can be obtained from the other by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that demonstrates congruence.
8.G.A. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
8.G.A. 4	Understand that a two-dimensional figure is similar to another if, and only if, one can be obtained from the other by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that demonstrates similarity.
8.G.A. 5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
8.G.B. 6	Understand the Pythagorean Theorem and its converse.
8.G.B. 7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world context and mathematical problems in two and three dimensions.
8.G.B. 8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.
8.G.C. 9	Understand and use formulas for volumes of cones, cylinders and spheres and use them to solve real-world context and mathematical problems.
Statistics and Probability (SP)	
7.SP.A. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of

	that population. Understand that random sampling tends to produce representative samples and support valid inferences.
7.SP.A. 2	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.
7.SP.B. 3	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.
7.SP.B. 4	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.
7.SP.C. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
7.SP.C. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
7.SP.C. 7	Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies. If the agreement is not good, explain possible sources of the discrepancy. a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
Standards for Mathematical Practice	
7.MP. 1	Make sense of problems and persevere in solving them.
7.MP. 2	Reason abstractly and quantitatively.
7.MP. 3	Construct viable arguments and critique the reasoning of others.
7.MP. 4	Model with mathematics.
7.MP. 5	Use appropriate tools strategically.
7.MP. 6	Attend to precision.
7.MP. 7	Look for and make use of structure.
7.MP. 8	Look for an express regularity in repeated reasoning.

