ENVISION2I
 DEEP LEARNING•CFSD

Mathematics Standards
 Catalina Foothills School District Grade 8

In Grade 8, the focus of instructional time is on three critical areas:

1. Develop understanding of irrational numbers.
2. Develop understanding of expressions and equations, including solving linear equations, linear inequalities, and systems of linear equations.
3. Develop understanding of the concept of a function and use functions to describe quantitative relationships, including modeling an association in bivariate data with a linear equation.
(1) Students use their understanding of multiplication and apply properties to develop understanding of radicals and integer exponents. They use their knowledge of rational numbers to develop understanding of irrational numbers.
(2) Students recognize equations for proportions ($y / x=m$ or $y=m x)$ as special linear equations ($y=m x+b$) understanding that the constant of proportionality (m) is the slope, and the graphs are lines through the origin. They understand that the slope (m) of a line is a constant rate of change, so that if the input or x -coordinate changes by an amount A, the output or y-coordinate changes by the amount $m-A$.

Students fluently solve linear equations and linear inequalities in one variable. They solve systems of two linear equations in two variables to analyze situations and solve problems. Students understand when they use properties of equality and logical equivalence, they maintain the solutions of the original equation.
(3) Students grasp the concept of a function as a rule that assigns to each input exactly one output. They can translate among representations and partial representations of functions (noting that tabular and graphical representations may be partial representations), and they describe how aspects of the function are reflected in the different representations.

Students use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For scatter plots that suggest linear association, students informally fit a straight line and assess the model fit by judging the closeness of the data points to the line.

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.

Standards for Math 8

The Number System (NS)	
8.NS.A. 1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion. Know that numbers whose decimal expansions do not terminate in zeros or in a repeating sequence of fixed digits are called irrational.
8.NS.A. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers. Locate them approximately on a number line diagram, and estimate their values.
8.NS.A. 3	Understand that given any two distinct rational numbers, $a<b$, there exist a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$. Given any two distinct irrational numbers, $a<b$, there exist a rational number c and an irrational number d such that $a<c<b$ and $a<d<b$.
Expressions and Equations (EE)	
8.EE.A. 1	Understand and apply the properties of integer exponents to generate equivalent numerical expressions.
8.EE.A. 2	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Know that $\sqrt{2}$ is irrational. a. Evaluate square roots of perfect squares less than or equal to 225. b. Evaluate cube roots of perfect cubes less than or equal to 1000.
8.EE.A. 3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and express how many times larger or smaller one is than the other.
8.EE.A. 4	Perform operations with numbers expressed in scientific notation including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities.
8.EE.B. 5	Graph proportional relationships interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways (for example: compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed).
8.EE.B. 6	Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane. Derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at $(0, b)$.
8.EE.C. 7	Fluently solve linear equations and inequalities in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solution. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers). b. Solve linear equations and inequalities with rational number coefficients, including solutions that require expanding expressions using the distributive property and collecting like terms.
8.EE.C. 8	Analyze and solve pairs of simultaneous linear equations. a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations including cases of no solution and infinite number of solutions. Solve simple cases by inspection. c. Solve mathematical problems and problems in real-world context leading to two linear equations in two variables.
Functions (F)	
8.F.A. 1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.)

8.F.A. 2	Compare properties of two functions each represented in a different way [algebraically, graphically, numerically in tables, or by verbal descriptions] (for example: given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change).
8.F.A.3	Interpret the equation y = mx + b as defining a linear function whose graph is a straight line; give examples of functions that are not linear (for example: the function $\mathrm{A}=$ side giving the area of a square as a function of its straight line).
8.F.B.4	Givear because its graph contains the points (1,1), (2,4), and (3,9) which are not on a Determine the rate of a change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or a graph. Track how the values of the two quantities change together. Interpret the rate of change and initial value of a linear function in terms of the situation it models, its graph, or its table of values.
8.F.B.5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
Geometry (G)	Verify experimentally the properties of rotations, reflections, and translations. Properties include: lines are taken to lines, line segments are taken to line segments of the same length, angles are taken to angles of the same measure, parallel lines are taken to parallel lines.
8.G.A.1	Understand that a two-dimensional figure is congruent to another if one can be obtained from the other by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that demonstrates congruence.
8.G.A.2	

	Summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.
8.SP.B.5	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. a. Understand that the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. b. Represent sample spaces for compound events using organized lists, tables, tree diagrams and other methods. Identify the outcomes in the sample space which compose the event. c. Design and use a simulation to generate frequencies for compound events.
Standards for Mathematical Practice	
8.MP.1	Make sense of problems and persevere in solving them.
8.MP.2	Reason abstractly and quantitatively.
8.MP.3	Construct viable arguments and critique the reasoning of others.
8.MP.4	Model with mathematics.
8.MP.5	Use appropriate tools strategically.
8.MP.6	Attend to precision.
8.MP.7	Look for and make use of structure.
8.MP.8	Look for an express regularity in repeated reasoning.

